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Abstract

The infrastructure for processing and analyzing high volumes of data has evolved at a

fast pace to keep up with the large collection of user generated data. As a result, new

technologies have emerged to facilitate the processing of data as well the management

of the datacenters used by these data processing tools. As a cluster manager, Apache

Mesos falls into the latter category. Mesos works by creating an abstraction layer

that allows multiple frameworks to share resources from a vast collection of nodes.

In contrast to models in which resources were statically reserved for each framework,

Mesos acts as a broker for traditional resources: CPU, Memory, and Disk Space.

With this model, each framework is capable of dynamically using as many or as few

resources as needed during execution. The Mesos model was created with the goal

of increasing hardware resource utilization in datacenters. However, the model does

not account for the increase in energy and power consumption that are created as a

direct consequence of high utilization. Peak power is important to consider due to the

cost of cooling [17], the physical limitations of power delivery [59], as well increasing

costs per Watt of peak critical power factored in when building a datacenter [69].

Furthermore, there are scenarios where reducing power demand for a specific time

period can result in costs savings. For example, reducing power demand during hours

designated by power providers as peak hours, where the cost per Watt is several
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times the base rate [42], can reduce operational costs. Thus, as the utilization of the

available resources continues to increase due to the Mesos resource allocation model,

peak power consumption and energy consumption quickly become important factors

to consider.

Our first contribution [16] presents a proof of concept by showing there exist

a difference in peak power consumption and energy utilization when changing the

order in which workloads of varying power consumption are scheduled. In this work

we use profiles created from offline executions of a series of benchmarks to determine

the order in which each workload is executed on the cluster. One strategy seeks

to schedule workloads in non-decreasing order of peak power consumption while the

other strategy gives priority to workloads that use more power on average than the

median average power consumption of all benchmarks. For both of these policies,

each node is treated as a bin where the sum of the chosen power based metric for

all workloads selected to run on a node is less than or equal to the Thermal Design

Power of that node. Both policies are applied within a local scope (a single node)

and within a global scope (whole cluster). Furthermore, we demonstrate how a simple

static power cap can help to reduce both power and energy consumption for these

workloads.

Our second contribution [14] expands upon our previous work by introducing

a power aware Mesos framework, Electron. Electron contains implementations of

various scheduling algorithms as well as a dynamic power capping policy. Using

an expanded set of workloads, including cryptographic and scientific applications,

we quantified the effects that different power capping strategies have on different

scheduling policies. Aurora’s first fit policy was used as a point of comparison for the
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performance of each combination. Further more, we introduced extrema, a dynamic

power capping policy capable of reacting to cluster power consumption in order to

reduce peak power and energy consumption.

Finally, our third contribution [15] builds upon our previous work by introducing

two new scheduling policies and a modified version of extrema, progressive extrema.

Progressive extrema is introduced to address extrema’s inability to continue to reduce

power and energy consumption once every node in the cluster has been power capped.

The additional scheduling policies offer further insight into how scheduling policies

affect makespan, energy consumption, and power consumption. Workloads run un-

der each different scheduling algorithm and power capping policy combination were

also varied to quantify how the makeup of a workload affects the overall power and

energy consumption when being performed under different scheduling and capping

combinations.
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Chapter 1

Introduction

Datacenters (DC) are a tremendous source of power consumption throughout the

world. In 2014, the Natural Resources Defense Council (NRDC) released a report

that estimates DC energy consumption for 2013 to be around 91 billion kilowatt-hours.

Furthermore, the report predicts that energy consumption in the US alone reach 140

billion kilowatt-hours annually by 2020. [11]. Power consumption by servers in a

datacenter is further compounded by the costs of cooling [50] and power delivery [52].

As microservices and large scale data analysis continues to move into the cloud,

datacenters powering these services should strive to operate in the most efficient

manner possible. This means achieving high utilization of hardware resources while

operating in a manner that is both energy conscious and power efficient.

1
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Figure 1.1: Architecture of Mesos and Aurora using the Thermos Executor.

1.1 Apache Mesos

Mesos provides scalability to massive scale applications. Examples of its use include

Apple’s Siri [72], Bloomberg’s data analytics [23], Paypal’s continuous integration sys-

tem [65], Netflix’s container orchestration [39], and cloud infrastructure management

at Verizon Labs [64]. IBM has explored integrating enterprise policies by way of IBM

EGO (enterprise grid orchestrator) into Mesos [2] for potential future use. Apache

Mesos provides a layer of abstraction above the compute resources in data centers

and large clusters. Mesos allows frameworks to deploy tasks onto nodes. An executor

responds to a Mesos defined API to establish and maintain registration with Mesos

agents, launch tasks onto resources that are in control of the executor’s framework,

clean up after tasks that fail, and terminate all tasks on a resource that is being

rescinded.

With the default installation, Mesos ecosystem works as follows:
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• A worker daemon analyzes the machine on which it runs, determines available

resources and advertises them to the Mesos master.

• The Mesos master partitions the pool of resources and makes them available to

registered frameworks by sending Resource Offers. A framework may refuse an

offer if it does not suit its needs or consume it by launching tasks on the node

linked to the offer.

• Mesos allocation strategies are used to determine how resource offers are made

to frameworks. By default, Mesos uses the Dominant Resource Fairness (DRF)

allocator which encourages fairness between frameworks by striving to allocate

sufficient resources to each framework[22].

Furthermore, the Mesos abstraction layer can be configured to be fault tolerant

by deploying multiple master instances. The system will elect a master to be a leader

through Zookeeper, a distributed key-value store [27] that utilizes a Paxos [37]-like

algorithm called Zab (ZooKeeper Atomic Broadcast) to maintain consistency. [32]

If the leading master experiences a failure, a new leader will be chosen from the

remaining master nodes.

1.2 Apache Aurora

Apache Aurora [4] is a framework that runs on Apache Mesos as shown in Figure 1.1.

It allows an application to be scheduled on nodes belonging to a Mesos cluster. Just

like Mesos, Aurora is able to be configured to run in a fault tolerant mode by running

multiple instances of the scheduler and electing one instance as the master scheduler

through Zookeeper [27].
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Aurora has its own Domain Specific Language (DSL) that allows users to configure

a Job. A Job consist of a collection of Tasks, each of which is comprised of Processes.

Each process is understood and managed by the Thermos executor bundled with

Apache Aurora. Thermos is run as a Mesos task on worker nodes and is responsible

for launching and monitoring each process.

Job Life-Cycle with Aurora: A job configuration is first submitted to Aurora. The

configuration contains resource requirements, number of instances to run, and may

contain constraints (e.g. task(s) can only be run on a specific node). Depending on

the configuration, one or multiple tasks begin their life-cycle in the Pending state. In

this state the scheduler seeks to find a resource offer made by Mesos that appropriately

matches the resource requirements and constraints defined by the job configuration

for each task. When an adequate resource offer is found, the task moves into the

Assigned state. A Remote Procedure Call (RPC) is made to a Mesos Agent containing

the task’s configuration. A Thermos executor is launched and an acknowledgment is

sent back to the Aurora scheduler. Upon receiving the acknowledgment the scheduler

moves the task into the Starting state. During the Starting state a sandbox is created

in the worker node chosen to execute the task. Upon the successful creation of

a sandbox the task enters the Running state where it remains until it enters the

Finished state if it is able to run to completion or the Failed state if not.

Jobs in Aurora can be of type Service, Ad-hoc, or Cron. Services are always

restarted after entering into a terminal state. Ad-hoc jobs are only restarted if it

enters a Failed state. Cron jobs are run at specific intervals of time. For this body

of work only ad-hoc jobs are considered as Services are not meant to finish executing

which makes it difficult to measure the overall energy used.

4



1.3 Contributions

• We demonstrate how bin-packing a set of tasks can effectively reduce the peak-

power usage and total energy usage while increasing the node utilization when

workloads are co-scheduled to be run using Mesos and Aurora.

• We present Electron, a Mesos framework that shows how a combination of

scheduling policies and power capping strategies leads to lower peak power

draws and/or lower energy consumption.

• We quantify the effect of Electron on resource utilization (CPU and memory)

and makespan. We show how an increase in resource utilization does not have

to result in an increase of power and/or energy consumption.

• We demonstrate the strengths and weaknesses of two fundamental strategies for

selecting Mesos offers. A First Fit strategy provides computationally fast, short-

sighted scheduling, while Bin Packing based strategies are computationally com-

plex but are capable of providing power efficient task distribution. While we

demonstrate the use of select policies to show the efficacy and viability of Elec-

tron, several other policies proposed in the literature can also be applied for use

with Mesos via our framework.

• We quantify the impact of using RAPL to cap a cluster while using First Fit

or Bin Packing based Mesos offer selecting strategies. We show how applying

a blanket static power capping policy results in increased makespan when used

in combination with Bin Packing task distribution strategies.
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• We present the Extrema and Progressive Extrema dynamic power capping strate-

gies which are able to reduce peak power consumption in a cluster while having

little to no impact on makespan. Extrema is able to reduce coincidence peak

power while having a subdued impact on makespan while Progressive Extrema

focuses on achieving lower power peaks than Extrema.

• We present Max-GreedyMins a high throughput Bin Packing scheduling strategy

that is best reserved for a handful of high power intensive tasks scheduled on

the same cluster as a plethora of lower power intensive tasks.

• We study three workloads of varying power intensiveness as well as the effect of

scheduling policy and power capping strategy on power and energy consumption

for these workloads. We demonstrate how Extrema is best suited for light

and moderate power consuming workloads while Progressive Extrema is better

suited for heavy power consuming workloads due to its aggressive power capping

approach.

1.4 Thesis Statement

This thesis presents a study on techniques that allow for the mitigation of co-incident

peak power draws as well as managing energy consumption in heterogeneous clus-

ters. By deploying dynamic power capping policies on top of different scheduling

algorithms we are able to achieve lower power peaks and, in many cases, lower energy

consumption. Furthermore, this work shows how the efficiency of the power cap-

ping and scheduling policy combination on lowering peak power consumption greatly

depends on the types of workloads being executed.
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Chapter 2

Related Work

Several efforts have been directed towards dividing a cluster into hot or cold zones or

determining a Covering Subset such that the cluster contains at least one replica of

each data block and the rest of the cluster can be shut down or put in sleep mode [34,

40, 38]. These schemes allow some nodes to be shut down or suspended. Lang and

Patel [38] built on this idea such that instead of leaving the cluster online at all times

with some nodes in sleep mode, they evaluate the savings of booting up nodes once

a job arrives. These approaches are not practical in Data Centers, as they negatively

affect the responsiveness of the system, especially for unexpected workloads [47].

Abdelzaher et al. [1] use CPU temperature for scheduling jobs on a MapReduce

cluster. In our earlier work on MapReduce based frameworks [24], we also quantified

the relationship between CPU temperature and energy consumption and adapted the

MARLA MapReduce framework [18] to dynamically schedule work to the nodes in a

heterogeneous cluster. While these results work for CPU intensive workloads, they

do not directly apply to Mesos based clusters that also take other parameters such

as storage and memory use into account for scheduling.
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Karakoyunlu et al. [33] developed a 2-approximation solution for minimizing en-

ergy consumption and balancing system load. Their schemes (Fixed Scheme, Dynamic

Greedy Scheme, and Correlation-Based Scheme) are designed to link cloud storage

needs to the cloud users. These policies can be adapted depending on the priorities

set by the cloud storage system. Our work takes a similar approach but our policies

are applied to affect the scheduling on Mesos clusters using CPU, memory, and power

usage.

Bodas et al. [7] developed a power aware scheduler for SLURM [30]. The power

consumption of each node is monitored and a uniform frequency mechanism is used

to limit power. Similar to our work, their design allows a policy-driven approach for

high and low power consumers. This work relies on changing the processor frequency

across nodes on which benchmarks are being run. Our approach, on the other hand,

assumes that in large data centers, where jobs are co-scheduled on virtualized clusters,

modification of the default CPU frequency scaling mechanisms is not practical.

Yang et al. [74] propose a policy driven, knapsack based scheduling algorithm

for a power aware scheduler with the goal of reducing the electricity bill without

degrading the system utilization. Their scheduling algorithm dispatches jobs with

higher power consumption during the off-peak period and jobs with lower power

consumption during the on-peak period. While this approach works for job batches

that do not require high throughput. Our work focuses on is on scheduling jobs that

are currently in queue to be launched on Mesos as quickly as possible. Our framework

can be extended to incorporate their policies for batch jobs.

Sarood et al. [63] propose a software-based online resource management system

and a scheme that uses an adaptive runtime system that can dynamically change the
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resource configuration of a running job. As a result resources allocated to currently

executing jobs can be modified. While this work also allows power capping, it assumes

job malleability such that resources can be dynamically changed for a running job.

This greatly increase the complexity of managing resources in a cluster and poses

scalability challenges. In our work, we assume that the resources allocated to a job

cannot be changed as that is a tenet of Mesos’s design.

Li et al. [41] designed an energy aware task scheduling algorithm base on the

Energy Aware Min-Min algorithm (EAMM) [43] where they put forward an Online

Power-saving State Control Strategy (OPSCS). This strategy assumes the nodes in

the cluster to be in one among k states, the kth state being the most idle state using

the least amount of power and the 0th state being the most active state using the

most amount of power. According to the EAMM algorithm, a node switches from a

lesser active state to the most active state when a task is set to run on that node.

The state of a node is stepped down one state at a time. Each step down transition

is a result of a node being idle in its current state for a longer time than a defined

threshold. The EAMM algorithm is not well suited for handling large amounts of

workload as the probability of a node stepping down to a lesser active state reduces

as the amount of workload increases. Furthermore, the work assume that for each

task being scheduled, the target node has transition to the most active state. This

strategy may not yield an optimal result for a less power intensive tasks. The EAMM

algorithm was implemented using a simulator assuming that the CPU states can be

controlled. In contrast, our work assumes that in large data centers that use Mesos,

it is not practical to expect system administrators to allow CPU state or frequency

modifications.
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Galloway et al. [21] present a power aware load balancing algorithm that main-

tains the states of all the compute nodes and the resource utilization percentages,

using these metrics to make a decision on the number of operating compute nodes

accordingly. Their algorithm places a job on a compute node that is powered on and

can accommodate the job based on the size of the requested resources. Otherwise,

a shutdown compute node is powered back up to accommodate this new job. Their

algorithm shuts down a compute node when its resource utilization is less than 25%.

This approach is not practical in Data Centers as the system’s responsiveness takes a

hit on the arrival of an unexpected job and job migration might have an unexpected

effect on power consumption.

Wu et al. [73] take aim at a different problem regarding power consumption: the

underutilization of power. Using Dynamo, a data center-wide power management

system that monitors the entire power hierarchy and makes coordinated control de-

cisions to safely and efficiently use provisioned data center power, they seek to use

power available to the datacenter efficiently. Dynamo works in a similar fashion to

our Extrema dynamic power capping algorithms. Where it differs from our work is in

their use of on-board power sensors and meters. Our work operates on the assump-

tion that access to the physical datacenters is not possible, thus placing power meters

where they aren’t already deployed becomes challenging. In order to overcome this

hurdle, we use the power estimations provided by RAPL to allow our power capping

algorithms to make decisions. Furthermore, our work deploys the power capping al-

gorithms in conjunction with different work scheduling algorithms, determining the

efficiency of the combination given different workloads.

Inadomi et al. [28] investigate methods of managing power in an HPC system using
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RAPL, IBM BlueGene/Q, EMON, and PowerInsight to both measure and combat

power inhomogeneity. Their study utilizes two of the same benchmarks DGEMM and

STREAM, as well as several other benchmarks ranging CPU and Memory intensive,

to I/O intensive. Using a model, they create a model making the assumption that

power consumption for both CPU and DRAM is proportional to the CPU frequency.

Using previously known information, such as the number of cores an application will

be using, they calculate a maximum power budget. Ultimately, this work proves that

RAPL can be used successfully to set a power ceiling.

Mars et al. [45] seek to address interference from co-located workloads. In par-

ticular, they focus on latency-sensitive workloads such as user facing applications.

The Bubble-Up approach presented relies on measuring much pressure an application

place on the memory subsystem and measuring how different levels of pressure affect

the performance much an application. In our work, we co-locate tasks with the goal

of utilizing components in an node as efficiently as possible. Interference between

co-located tasks is not only bad for performance, it also has a detrimental effect on

energy due to static power consumption. Our work quantifies the impact interference

has on energy and power consumption.

Delimitrou et al. [13] present Quasar, a cluster management that seeks to increase

resource utilization while allowing applications to maintain an adequate level of per-

formance. Instead of allowing for reservation of resources, Quasar presents a model

that allows users to specify performance requirements, leaving the decision engine to

allocate the appropriate amount of resources. The work also explores the concept

of interference, that is, when co-located workloads leads to a degraded performance

compared to the performance of each workload run in isolation. Whereas the work
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presented by Delimitrou et al. focuses on achieving high utilization, our work focuses

on the impact achieving such high utilization has on on power and energy consump-

tion.

Delimitrou et al. [12] propose a system that quantifies the pressure applications

place on hardware components. Leveraging this information they are able to under-

stand how certain applications react to increased pressure being place on hardware

and demonstrate how understanding, managing, and reducing application interference

can improve efficiency and/or performance.

Vasan et al. [70] performed an in depth study of power consumption by servers

in a data center. Using various metrics, they quantified if the power consumption

of the servers was worth the work being carried out by each server. Further more,

they provided insights into how servers could operate in a more efficient manner,

such as allowing processors to enter into C-states [60] during idle times. Vasan et al.

also introduce an empirical model for power consumption that correlates power and

utilization. Our work builds upon the core idea of the objective value of each Watt

consumed by the cluster in terms of carrying out work done. Our work differs in that

we explore techniques that improve the work done by each Watt consumed through

the use of work scheduling techniques as well as power capping.

Fan et al. [19] present a study of the power usage characteristics of large collec-

tions of servers for different classes of applications over a period of approximately

six months. In this work they determine that even for well tuned applications, there

can be a 7 to 16% difference between predicted power consumption and actual power

consumption, making estimating power consumption difficult.
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Chapter 3

Exploring the Design Space for

Optimizations with Apache Aurora

and Mesos

We address the peak-power collision problem using a policy-driven heuristic approach

to the multi-dimensional bin packing problem. We use the DaCapo benchmarks[6]

as workloads. DaCapo is a set of open source, real-world applications that exercise

the various resources within a compute node. Our approach characterizes the power

use of each benchmark on each node using fine-grained power profiles provided by

Intel’s Running Average Power Limit (RAPL)[10] counters via the Linux Powercap-

ping framework [58]. We take the power profiling data for a given benchmark and

node, and use that to engineer the job arrival time by potentially delaying it up to 3

seconds. This delay ensures that the power surge for two benchmarks do not coincide

and also influences how Aurora allocates resources for each benchmark. We show the

effect of two different bin packing policies, one that takes into account local power
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profile information and one that takes into consideration global power profile data.

We evaluate how the staging of tasks to avoid peak power collisions also influences

resource usage and energy consumption.

We make the following contributions in this chapter:

• We demonstrate how bin-packing a set of tasks can effectively reduce the peak-

power usage and total energy usage while increasing the node utilization, when

workloads are co-scheduled to be run using Mesos and Aurora.

• We show how our experimental pre-scheduler can inform application developers

how their applications respond to peak power usage in a heterogeneous cloud

environment.

• We demonstrate how Apache Mesos and Apache Aurora should be used so that

application developers can express what they need from a cluster in terms of

peak power use, and not just memory, disk, and CPU specifications.

3.1 Experimental Setup

Our experiments were conducted on the Binghamton University Cloud and Big Data

Computing Laboratory’s research cluster, which comprises the following components:

• 4 Baseline CPU/RAM nodes - Two 6 core, 12 thread Intel Xeon E5-2620 v3 @

2.40GHz and 64 GB RAM

• 2 Faster CPU/Baseline RAM node - Two 8 core, 16 thread Intel Xeon E5-2640

v3 @ 2.60GHz and 64 GB RAM
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• 2 Fastest CPU/More RAM node - Two 10 core, 20 thread Intel Xeon E5-2650

v3 @ 2.30GHz and 128 GB RAM

The workloads with which we assess performance were derived from the DaCapo

Benchmark suite. Benchmarks were run inside Docker containers on the OpenJDK6

JVM. Performance of containers has been measured to be as at the same level, or

better, than Virtual Machines [20]. Therefore, no performance degradation is ex-

pected compared to a Virtual Machine based experiment. Each workload possesses

distinct characteristics[6] as listed in Table 3.1. Each node runs 64-bit Linux 4.2.0-18

and shares an NFS server. Apache Mesos 0.25.0 is deployed as the cluster manager,

Apache Aurora 0.11.0 as the scheduler, and Docker 1.9.1 as the container technology.

Performance Co-Pilot collects metrics for all nodes in the cluster. These metrics in-

clude energy measurements from RAPL counters, and various statistics about CPU

and memory usage from the worker nodes. An Ansible playbook is deployed to limit

power consumption by the nodes in the cluster using the Linux Powercapping frame-

work[58].

The DaCapo benchmarks tradebeans, tradesoap, and tomcat simulate cloud

workloads with memory and network intensive components. The remaining bench-

marks simulate diverse types of workloads varying from highly parallel workloads to

highly serial tasks.

Power Throttling (Power Capping): To control the power usage by CPUs

in our cluster, we used the Linux Powercapping framework [58]. The Powercapping

framework takes advantage of Intel’s RAPL. RAPL creates a power estimate based

on a highly accurate software model [60]. The power estimate value determines the

P-state [3] at which the processor must operate to make the best effort to meet a
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avrora Multithreaded AVR microcontrollers simulator

batik Scalable Vector Graphics generator, limited con-
currency

eclipse Eclipse IDE perf. tests, mixed concurrency

fop Multithreaded PDF generator from XSL-FO

h2 Multithreaded, in-memory benchmarks

jython Python benchmark, limited concurrency

luindex Documents indexer, limited concurrency

lusearch Multithreaded keyword finder

pmd Multithreaded Java source code analysis

sunflow Multithreaded Raytracer

tomcat Multithreaded server

tradebeans Multithreaded daytrader benchmark. Uses Java
Beans, in-memory database, and GERONIMO

tradesoap Multithreaded daytrader benchmark. Uses
SOAP, in-memory database, and GERONIMO

xalan Multithreaded XML to HTML converter.

Table 3.1: List of benchmarks in the DaCapo Suite

power budget. [10] For this set of experiments, we set the power-cap at 50% of the

TDP for each node. This percentage was determined to be the most appropriate

through experimentation.

Aurora Job creation: To orchestrate the experiments on the Mesos cluster we

generated several Aurora job configurations, including multiple versions of the same

benchmark constrained to only run on a specified node. Our job launcher submits

these jobs through Aurora’s client-side application, which converts the Domain Spe-

cific Language job configuration into an Apache Thrift Remote Procedural Call made

to the Aurora Scheduler. The job then progresses through the lifecycle of an Aurora

job described in Section 1.2 .
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Experimental workflow: The Bin-Packer generates a set of bins, each contain-

ing a set of tasks. This information is passed to a job launcher. The job launcher

generates the appropriate Aurora job configuration that results in a specific task being

launched. The set of tasks is submitted in groups determined by the start and end of

each bin with a fixed delay between bins. We set a configurable delay value at three

seconds because most of the tasks take approximately three seconds to experience a

power spike and subsequently drop power consumption to its average consumption.

Profiling: We run the benchmarks several times on each node and use the in-

formation from each run to determine valuable characteristics about each benchmark

including when it experienced a power surge, CPU utilization, and makespan.

3.2 Max Peak First Bin Packing (MPF-BP)

MPF-BP is a bin-packing algorithm. A sorted list of all the peaks from the profiling

stage is created. The size of each bin is determined by the thermal design power

(TDP) of a given node. MPF-BP fits peaks into a bin such that the resulting set of

tasks in each bin is
∑n

i=1 PeakPower(Taski) ≤ TDP where n is the number of tasks

in the bin. When a bin reaches its maximum capacity or there are no more tasks in

the queue that fit in the bin, a new bin is created. These steps are repeated until all

the workloads have been placed inside a bin.

Power Usage on 3 different nodes with MPF-BP: We conducted experi-

ments to study the peak power usage, energy consumption, and memory utilization

when MPF-BP is applied to three different nodes - baseline, faster, and fastest. The

results for the baseline node are presented in Figures 3.1 to 3.3 and described below.

The Figures for faster and fastest display similar characteristics and have therefore
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been omitted, however, the results are summarized below in this subsection.

Algorithm 1 MPF-BP
n← 0
Binn.capacity ← CPUTDP

Q← Max peaks in non-decreasing order
while Q is not empty do

Task ← Q.pop()
if Binn.capacity − TaskPeakPow ≥ 0 then

Binn.capacity ← Binn.capacity − TaskPeakPow

Binn.insert(Task)
else

Q.push(Task)
n← n + 1
Binn.capacity ← CPUTDP

end if
end while

Baseline node power characteristics: As shown in Figure 3.1, the max peak

power used by the node is about the same when compared to the default configuration.

Figure 3.2 shows the memory usage for the three cases. Compared to the default

run, the MPF-BP optimized and uncapped run achieved a 48% decrease in total

memory usage, while the power-capped-bin-packed achieved a 31% total memory use

decrease compared to the default run.

Figure 3.3 shows that when the node’s power is throttled by 50%, the energy

expenditure is reduced by 64% compared to the baseline run, and is about 4% more

efficient than the bin-packed optimized case.

Faster node power characteristics. On the faster node, (Figure not shown)

peak power is not substantially different from the runs containing bin-packing and

power-capping. However, the frequency with which peaks are reached is reduced, from

four large power spikes to three large spikes in the bin-packed run. Memory utilization
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Figure 3.1: Baseline node power consumption. Outlines the effects of power capping
the baseline node. The max peak power is reduced using a power-cap of 50% of the
total TDP of the node

data shows that compared to the default configuration, the MPF-BP optimized and

uncapped run achieved a 131% decrease in total memory usage, while the power-

capped-bin-packed approach achieved a 155% total memory use decrease compared

to the default run.

Fastest node power characteristics: On the fastest node (Figure not shown),

the difference in peak power between the default run and the MPF-BP optimized run
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Figure 3.2: Baseline node Memory utilization. This figure shows that compared to
the default run, the MPF-BP optimized and uncapped run achieved a 48% increase
in total memory utilization, while the power-capped-bin-packed achieved a 31% total
memory use increase compared to the default run.

is less than the default case by 4%. For memory utilization, compared to the default

configuration, the MPF-BP optimized and uncapped run achieved a difference of 77%

decrease in total memory utilization, while the power-capped-bin-packed run achieved

a difference of 78% total memory use decrease compared to the default run. The total
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Figure 3.3: Baseline node Energy consumption.

energy expenditure improved in the bin-pack only run by 28% compared to the bin-

packed, power-capped run by 42% as compared to the default run. An improvement

in both of these areas is only experienced when the MPF-BP is used with a power-cap

of 50%. The max peak power is decreased by 27% compared to the bin-pack only run,

and 23% compared to the default run. The energy expenditure sees an improvement

of 22% over the bin-pack only run and 54% over the default run.
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3.3 Max Average Peak Bin Packing (MAP-BP)

MAP-BP generates a sorted list of means for all workloads based on the power con-

sumed by each particular workload. The median is calculated for the set containing

the mean power used by each benchmark. A bin is packed with tasks that have a

higher peak than the median of the set. The steps are repeated once a bin reaches

capacity until all tasks have been placed in a bin. Once again, the aggregate sum of

the max power of the set of tasks is not allowed to exceed the TDP of the node they

will be scheduled on.

Power Usage on 3 different nodes with MAP-BP: We conducted experi-

ments to study the peak power usage, energy consumption, and memory utilization

when MAP-BP is applied to three different nodes - baseline, faster, and fastest. Again,

the results for just the baseline node are presented in Figures 3.4 to 3.6. The results

for all three nodes are described below.

Baseline node power characteristics. The bin-packed only run in Figure 3.4

shows similar power peaks to those observed in Figure 3.1. The bin-packed only run

for MPF-BP experiences a similar max peak as the bin-packed only MAP-BP run.

The max peak of the power-capped MPF-BP policy reaches above 100 watts while

the power-capped MAP-BP policy is below the same threshold. The bin-packed only

run reaches a max peak of around 110 Watts while the power-capped-bin-packed max

peak only reaches about 90 Watts.

Faster node power characteristics. In terms of peak power, the bin-packed-

only run has a peak of 140 Watts, which is 20% higher than any peak in Figure 3.1.

Furthermore, its peaks are 24% higher than the baseline. The power-capped-bin-

packed case on the other hand sees a similar improvement to MPF-BP with only one
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Figure 3.4: Baseline node Power consumption using MAP. The bin-packed only run
shows similar power peaks to those observed in Figure 3.1. The most noticeable
difference is the decrease in consumption around 100 seconds and a late spike at
around 150 seconds. The power-capped-bin-packed run displays similar characteristic
with lower peaks by 90% when compared to the baseline and 1% compared to the
optimized run.

peak crossing the 100 Watt threshold. Energy usage for the bin-packed-only run sees

similar results, with MAP-BP based run incurring 6% more energy consumption. The

power-throttled-bin-packed run sees a 15% jump in energy consumption compared to

its MPF-BP counterpart. Memory utilization shows that compared to the default

23



Figure 3.5: Baseline node Memory Utilization using MAP. Memory utilization, shown
in Figure 3.5, shows that compared to the default run, the MPF-BP optimized and
uncapped run achieved a 85% increase in total memory utilization, while the power-
capped-bin-packed achieved a 67% total memory use increase compared to the default
run.

run, the MPF-BP optimized and uncapped run achieved a 148% increase in total

memory utilization, while the power-capped-bin-packed approach achieved a 127%

total memory use increase compared to the default run.

Fastest node power characteristics. The peak power consumption achieved

by the bin-packed only run is similar to that exhibited in MPF-BP, with no change
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Figure 3.6: Baseline node Energy consumption using MAP. MAP-BP, Baseline Node
using the MAP-BP policy. The energy utilization compared to the MPF-BP is 14%
higher for the bin-packed-only run and 17% higher for the power-capped-bin-packed
run.

in max peak. The power-capped-bin-packed run, however, reaches a max peak that

is 11% less compared to its MPF-BP counterpart. The bin-packed-only version has

a decrease of 11% compared to the MPF-BP bin-packed only run. Total memory

usage shows that compared to the default run, the MPF-BP optimized and uncapped

run achieved a 70% increase in total memory utilization, while the power-capped-

bin-packed achieved a 48% total memory use increase compared to the default run.
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Figure 3.7: Power Utilization of cluster using MPF-BP. The power usage for the
entire cluster shows a similar trend to the one seen in Figure 3.1 The max power
peak for the default run, however, is 3% smaller than the max peak of the cluster
running the MPF-BP. The max peak for the power-capped-bin-packed run shows an
improvement over the other two runs by 8% against the default run and 11% against
the power-capped-bin-packed run.

3.4 MPF-BP for the Entire Cluster

Figures 3.7 to 3.9 show the MPF-BP policy applied to the entire cluster. Each node

was responsible for bin packing its own set of tasks. Taking into account the power

usage for the entire cluster, the results show a similar trend to the one seen in Figure
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Figure 3.8: Memory Utilization of cluster using MPF-BP.Memory utilization is, at
its highest, 147% higher than the bin-packed only run and 157% higher than the
power-capped-bin-packed run. The default run expends 77% more energy than the
bin-packed only run and 86% more energy than the power-capped-bin-packed run.

3.1, The max peak for the power-capped-bin-packed run shows an improvement over

the other two runs by 8% against the default version, and 11% against the bin-packed

only version. Memory utilization, at its max, was 147% higher than the bin-packed

only run and 157% higher than the power-capped-bin-packed run. Finally, similar

to results shown in Figure 3.9, the default run expends 77% more energy than the
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Figure 3.9: Energy Consumption of cluster using MPF-BP.

bin-packed only run, and 86% more energy than the power-capped-bin-packed run.

3.5 MAP-BP for the Entire Cluster

The power trend for the bin-packed only and power-capped-bin-packed follow similar

patterns, with a 11% difference in peaks. The peak power for the bin-packed only

approach improves upon the cluster-wide MPF-BP bin-packed only max peak, shown

in Figure 3.7, by 10% while the power-capped-bin-packed version also improves upon

its MPF-BP cluster-wide counterpart in Figure 3.7 by 10%. The energy utilization
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Figure 3.10: Power consumption of cluster using MAP-PB.The power trend for the
bin-packed only and power-capped-bin-packed follow similar patterns, with the differ-
ence in peaks being 11%. The peak power for the bin-packed only improves upon the
bin-packed only max peak in Figure 3.7 by 10% while the power-capped-bin-packed
improves upon the power-capped-bin-packed max peak in Figure 3.7 by 10%.

compared to MPF-BP algorithm is similar to the bin-packed only version. The power-

capped-bin-packed version has a 23% increase compared to the power-capped-bin-

packed version run in Figure 3.9.
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Figure 3.11: Energy consumption of cluster using MAP-BP. The energy utilization is
similar to the MPF-BP policy.

3.6 Analysis of our Policies on Aurora and Mesos

The improvements for both the policies can be attributed to the default task schedul-

ing mechanism that exists in Mesos and Aurora. The default mechanism does not

take into account the power profiles of the nodes for a given benchmark. Our poli-

cies ensure that tasks are scheduled such that multiple tasks do not experience peak

power at the same time. Mesos recycles non-reserved resources from an offer as a

new, smaller resource offer [25]. The improvements experienced by our bin-packing

policies can be further attributed to Apache Aurora’s offer caching mechanism and
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Mesos’ resource recycling procedure reacting positively to the configurable 3 second

delay we have inserted between tasks. Aurora’s first match scheduling is now forced

to follow the scheduling order our policies have enforced instead of a generic policy

it uses by default that is based on the jobs that are in the queue and which resource

offers have been received and cached. Mesos and Aurora are top level Apache projects

that are subject to active contributions by the open source community. We developed

a framework to evaluate and analyze different policies for using these tools, off the

shelf, without making any changes to Mesos 0.25.0 nor Aurora 0.11.0.

3.7 Conclusion

Our policy driven approach is highly effective for use with Apache Mesos and Aurora.

• The order in which tasks are co-scheduled in Mesos and Aurora has a significant

impact on energy usage, resource utilization, and peak power usage.

• The MPF-BP policy achieves 8% reduction in peak power usage compared to

the default run of Mesos and Aurora in a cluster. Additionally, it provides a

gain of 86% in energy savings.

• The power-capped-bin-packed MAP-BP policy, compared to the power-capped-

bin-packed MPF-BP policy, achieves 10% reduction in peak power usage. How-

ever, it suffers an increase of 95% in energy consumption in comparison to the

power-capped-bin-packed MPF-BP policy.

• Inserting delays between sets of job submission mitigates penalties created by

large resource offers and small tasks.
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• Based on results, prioritizing the tasks with the highest energy peaks (MPF-BP)

results in the favorable scenarios compared to MAP-BP and default. It must

be noted, however, that MPF-BP has the potential for starving tasks with the

lowest peak power. Additionally, these approaches require a power-profile which

may not always be available and the study is limited in scope to a only a few

applications.
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Chapter 4

Electron: Towards Efficient

Co-Scheduling on Heterogeneous

Clusters with Apache Mesos

The landscape for massive workload execution is dominated in the industry by large-

scale data centers running different cloud software management tools to efficiently

manage the large infrastructure. With the recent availability of virtualized clouds

for production use, a similar shift has started for science and academic applications

such as JetStream [67] and Chameleon [9]. Among the software management tools

being deployed in data centers and clouds, Apache Mesos [25], with its data center

operating system, has gained significant traction in the industry. A key tenet of

successfully using data centers to their full potential is ensuring that the utilization

of the components remains high. High utilization of resources, however, often bears

a cost in terms of energy and power consumption. Moreover, unchecked peak power

draws can lead to increased costs for both data centers and power suppliers[5]. Thus,
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our focus is on reducing peak power draws and energy consumption without having

a large impact on makespan and resource utilization.

Marathon [44] and Aurora [4] are the widely used frameworks that interact with

Mesos to submit jobs, negotiate resource offers, and receive feedback on the sta-

tus of jobs. While both Marathon and Aurora support container orchestration, via

Docker [48] and Mesos containers, Marathon is only suited for long-running services

that need init style functionality such that the services are monitored and restarted

whenever needed.

Mesos, Aurora, Marathon, and other tools in this space are designed to allow co-

scheduling of tasks on nodes, with isolation between tasks provided by containeriza-

tion. When tasks are co-scheduled, the power they draw from the node is dependent

on (a) how efficiently they use the hardware resources, and (b) whether the peak power

draws of different tasks coincide. It is known that optimal co-scheduling of applica-

tions to minimize peak power usage can be reduced to the NP-Hard multi-dimensional

Bin Packing problem [46]. To accommodate this, our approach uses heuristics that

can prioritize different policies such as reducing peak power usage, reducing energy

consumption, and improving resource utilization while maintaining similar execution

time to non-power-aware runs. We quantify the improvements in power and energy

usage along with the impact that these policies have on the makespan and resource

utilization for a set of workloads run on Apache Mesos.

By design, Aurora uses a First Fit policy exclusively, and was not designed to be

energy conscious. We therefore designed and developed our own framework, Electron,

with similar characteristics to Aurora, to serve as a proof of concept that a framework
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that is capable of combining different scheduling policies with power capping strate-

gies can be leveraged for power aware clouds. Electron is designed as a lightweight,

configurable framework, which can be used in conjunction with built-in power capping

policies to reduce the peak power and/or energy usage of co-scheduled tasks.

We make the following contributions in this paper:

• We have developed a Mesos framework, Electron, to show how a combination

of scheduling policies and power capping strategies leads to lower peak power

draws and/or lower energy consumption.

• We quantify the effect of Electron on resource utilization (CPU and memory)

and makespan.

• We demonstrate the following fundamental strategies for consuming Mesos of-

fers: First Fit and Bin Packing. While we demonstrate the use of these select

policies to show the efficacy and viability of Electron, several other policies pro-

posed in the literature can also be applied for use with Mesos via our framework.

• We quantify the impact of using RAPL to cap a cluster while using First Fit

or Bin Packing as the Mesos offer selecting strategies. We introduce a dy-

namic capping strategy, Extrema, to mitigate the impact of power capping on

makespan.

4.1 A new Framework

Aurora allows for mass scheduling of tasks on Mesos controlled resources. However,

Aurora’s scope is limited to only allowing users to schedule ad-hoc jobs, service jobs,
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Figure 4.1: Architecture of Mesos and Aurora/Electron. Note that Electron has the
same position in the architecture as Aurora.

and cron jobs based on three constraints CPU, Memory, and Disk. The end user has

no input on how Aurora should make use of Mesos resource offers. Important details

like how the tasks queue should be ordered and how many tasks to schedule on an offer

are not controllable by the end user. To consume Mesos resource offers, Aurora has

been fitted with a First Fit algorithm which makes it very simple to implement more

complex features like preemption. It became immediately clear that being bound to

a single Mesos resource offer consumption approach was severely limiting. Thus, in

order to have full control over how tasks would be scheduled on the cluster based

on Mesos resources offers and to explore different ways of consuming offers and to

quantify the impact offer consumption and queue ordering has on resource utilization,

power, and energy consumption, a new framework, Electron, was created.
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4.2 Consuming Mesos Offers

Mesos sends each registered framework a coarse-grained list of resource offers. Frame-

works are responsible for deciding how to consume these offers. There are two fun-

damental ways for frameworks to make use of the resources present in a Mesos offer:

First Fit and Bin Packing. It should be noted that when resources available in an

offer are not consumed in their entirety by a framework, any leftover resources are

recycled by Mesos and are advertised as part of a new offer.

4.2.1 First Fit

Mesos sends each registered framework a coarse-grained list of resource offers. Frame-

works are responsible for deciding how to consume these offers. There are two fun-

damental ways for frameworks to make use of the resources present in a Mesos offer:

First Fit and Bin Packing. It should be noted that when resources available in an

offer are not consumed in their entirety by a framework, any leftover resources are

recycled by Mesos and are advertised as part of a new offer.

4.2.2 Bin Packing

This approach attempts to fit as many tasks as possible from the queue of tasks

waiting to be scheduled into a single offer before moving to the next. If a task does

not fit in the current offer, the next task in the queue is evaluated for fitting. If no

task fits in an offer, that offer is rejected. The type of queue used for storing tasks,

which are waiting to be scheduled, remains up to the framework designer. For these

experiments, we used a priority queue keyed by the expected power usage. In this
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instance, we calculated this value by cataloging the max peak power over ten runs

for each benchmark and using the median of the max peaks as the expected power

usage value. This value is meant to represent the worst case scenario of power draw

for each benchmark. This value only influences the order in which benchmarks are

attempted to be scheduled and we acknowledge that there are other statistically valid

values that are also suitable choices.

4.3 Measuring and Limiting Power Consumption

In our experiments, we used RAPL to monitor and limit power consumption. RAPL

provides us with the ability to deploy our system on any cluster which is powered by

Intel hardware based on the Sandy Bridge1 architecture or newer. This provides us

with improved flexibility when scaling our system, compared to placing power meters

on nodes in existing clusters due to the usual lack of physical access to most data

centers. Furthermore, although RAPL readings are estimates, Khan et al. have shown

that they are accurate enough to extrapolate wall power usage [35], while Petoumenos

et al. have quantified RAPL’s ability to cap power consumption successfully[56]. On

servers, RAPL readings are available for CPU and DRAM power consumption. In

our experiments, we aggregate both of these readings to observe and record power

consumption.

4.3.1 Static Power Capping

Static capping sets a loose upper bound on power consumption by setting each node in

the cluster to a fixed fraction of their Thermal Design Power (TDP). However, static

1Sandy Bridge architecture was released in 2011.
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capping neither considers the power usage trends of the cluster, nor the workloads

that are executing on the nodes in the cluster. Thus, for power intensive benchmarks,

a static cap leads to an increase in makespan as RAPL reduces a processor’s clock

speed in an effort to remain within a power budget. Since a static cap is a one size

fits all capping strategy, it is difficult to determine a generic cluster-wide static cap

value.

For our set of experiments, through taking into account the characteristics of our

cluster and our workloads and through experimentation, we determined that setting

a cap equal to 50% of each node’s TDP saw the most beneficial power and energy

reductions versus increased makespan trade off.

4.3.2 Extrema Dynamic Power Capping

In order to address some of the shortcomings of the static capping policy, we designed

a dynamic capping policy that is able to make smarter trade-offs between makespan

and power consumption.

The Extrema capping algorithm, shown in Algorithm 2, is designed to react to

power trends in the cluster and restrain the power consumption of the cluster within

a power envelope. This is done by monitoring and reacting to the power usage trend

of the cluster and preventing it from crossing defined high and low thresholds. The

Average Historical Power (AHP) value is compared against a high threshold and a

low threshold. If the cluster’s AHP exceeds the high threshold, the node that used the

highest amount of power is capped. Otherwise, if the cluster’s AHP is below the low

threshold, a node that was last capped is uncapped. Ordering the capping of nodes in

this way eases the transition to a fully uncapped cluster. For this set of experiments,
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and taking into account the results of our static capping experiments, we picked a

50% capping value for nodes chosen to be capped. Expectedly, Extrema’s efficacy is

dependent on being able to determine accurate high and low thresholds, which vary

for each application class and scheduling policy.

Algorithm 2 Extrema Dynamic Capping algorithm

1: procedure Extrema Cap(Threshold)
2: ClusterAvg ← Avgrunning(ClusterPower)
3: CappedNodes← Stack()
4: if ClusterAvg > Threshold.Hi then
5: V ictims← Sortnon−inc(AvgPowerNode[...])
6: for Victim in Victims do
7: if Victim not in CappedNodes then
8: Cap(Victim)

9: CappedNodes.Push(Victim)

10: break

11: end if
12: end for
13: end if
14: if ClusterAvg < Threshold.Low then
15: Uncap(CappedNodes.Pop())

16: end if
17: end procedure

4.4 Experimental setup

Our experiments were conducted on the Stratos cluster in the Binghamton University

Cloud and Big Data Computing Laboratory’s research cluster which is comprised of

the following components:

• 2 Class A nodes - Two 10 core, 20 thread Intel Xeon E5-2650 v3 @ 2.30GHz

and 128 GB RAM
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Test
suites

Description Type

Audio
Encoding

Runtime measurement to encode WAV
file to different audio formats.

CPU

CryptographyCryptography tests such as OpenSSL and
GnuPG.

CPU

Network
Loopback

Computer’s networking performance test-
ing.

Network

Avrora Multithreaded AVR microcontrollers sim-
ulator.

CPU

Batik Produces Scalable Vector Graphics im-
ages.

Memory

Eclipse Non-GUI jdt performance tests for the
Eclipse IDE.

CPU

Jython Interprets the pybench Python bench-
mark.

CPU

Pmd Multithreaded Java source code analysis. CPU

Tradebeans Daytrader benchmark run on GERON-
IMO with an in-memory H2 DB.

Memory

H2 Executes transactions against a model of
a banking application.

Memory

Xalan Multithreaded XML to HTML converter. Mixed

Sunflow Renders a set of images using ray tracing. CPU

miniFE[49] Finite element generation, assembly and
solution for an unstructured grid prob-
lem.

CPU

DGEMM[62] Multi-threaded, dense-matrix multiplica-
tion.

CPU

STREAM[31]Calculates sustainable memory band-
width and the computation rate for sim-
ple vector kernels.

Memory

Table 4.4. Workload benchmarks
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• 2 Class B nodes - Two 8 core, 16 thread Intel Xeon E5-2640 v3 @ 2.60GHz and

64 GB RAM

• 4 Class C nodes - Two 6 core, 12 thread Intel Xeon E5-2620 v3 @ 2.40GHz and

64 GB RAM

The classification of the nodes into power classes in the Stratos cluster was done based

on the potential power consumption by processors on each of those nodes. Class A

nodes have the highest Thermal Design Power (TDP), followed by Class B, and finally

Class C. The higher the TDP, the more Watts a processor is expected to consume as

per the chip manufacturer specifications. Each node runs 64-bit Linux 4.4.0-45 and

shares an NFS server. Apache Mesos 1.0.1 is deployed as the cluster manager. For

some experiments, Apache Aurora 0.16.0 is used as the sole framework to schedule

workloads. For other experiments, our Electron framework is used. Docker 1.12.3 is

used as the container technology. Performance Co-Pilot [55] is used to collect metrics

for all nodes in the cluster. These metrics include energy measurements from RAPL

counters and various statistics about CPU and memory usage from each worker node’s

Linux kernel. An Ansible playbook is used to statically cap all nodes in the cluster

using the Linux Powercapping framework[58] for our static capping experiments. For

our experiments with Extrema dynamic capping, the Electron framework is able to

interact directly with the hosts to set a power cap. All benchmarks are run inside

Docker containers to maintain workload environment consistency.

Each DaCapo workload possesses distinct characteristics[6], as listed in Table

4.4. The workloads with which we assess performance were derived from the Da-

Capo Benchmark suite, Phoronix Benchmark suite, MiniFE from Mantevo [49], as

well as Stream and Dgemm from NERSC [53]. The DaCapo benchmark tradebeans
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simulates a cloud workload with memory and network intensive components. The re-

maining benchmarks simulate diverse types of workloads varying from highly parallel

workloads to highly serial tasks.

4.5 Performance Analysis

Aurora Electron FF Electron BP

Makespan (s) 1441 1532 1640

Power Max (W) 1066.52 1231.38 1209.15

Power Mean (W) 729.28 684.87 602.09

Power Median (W) 788.87 728.30 633.81

90th Percentile (W) 955.55 924.40 684.45

95th Percentile (W) 981.73 970.09 707.96

Table 4.1: Power consumption statistics for Aurora, Electron FF, and Electron BP.

Aurora vs. Electron First Fit (Electron FF)

In Figures 4.2 to 4.4, we can observe that Aurora and Electron with a First Fit

policy exhibit similar performance. The similarity in performance is backed by a 1%

difference in the 95th percentile for power consumption. The difference in the mean

power consumption, however, is lower by 6% for Electron FF as compared to Aurora’s

mean power consumption. A notable difference between the two power profiles occurs

at time 859 where Aurora continues to fluctuate between 800 and 1000 Watts while

Electron FF begins to decrease power consumption, experiencing max peaks of 710

Watts at time 914 as can be seen in Figure 4.3. While the energy consumption is

virtually the same for both Electron FF and Aurora with only a 2 kilojoule difference,

there is a decrease of 6% in the mean CPU Time used to finish all computations by
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Figure 4.2: Cluster-wide CPU & Memory Utilization of Aurora and Electron without
a power cap.

Electron FF. Finally, the difference in memory consumption between Electron FF

and Aurora is large, with Electron FF experiencing a mean memory utilization that

is 51% lower. We speculate that this difference in memory usage may be due to

inactive memory left behind by earlier experiments making the memory usage for

Electron FF an outlier. Further investigation needs to be done to understand the

large difference in memory utilization observed in Figure 4.2 between Aurora and

Electron FF.
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Figure 4.3: Cluster-wide Power Consumption of Aurora and Electron without a power
cap.

Electron FF vs. Electron Bin Packing (Electron BP)

A comparison between Electron FF and Electron Bin Packing can also be seen in

Figures 4.2 to 4.4. Electron BP suffers an increase in makespan compared to Electron

FF of 7% and 14% compared to Aurora. However, the 95th percentile of power

consumption for the Electron BP run is decreased by 27% compared to Electron FF

and a similar percentage when compared to Aurora. Overall energy consumption is

decreased by 6% compared to Electron FF and decreased by 6% compared to Aurora.
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Figure 4.4: Cluster-wide Energy Consumption of Aurora and Electron without a
power cap.

The mean CPU Time needed to finish all workloads by Electron BP is 19% lower than

Electron FF and 23% lower than Aurora. Mean memory consumption is 19% lower

compared to Aurora.
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Aurora-S Electron FF-S Electron BP-S

Makespan (s) 1643 1570 1616

Power Max (W) 886.14 929.28 948.05

Power Mean (W) 611.87 634.20 532.34

Power Median (W) 700.02 706.04 546.42

90th Percentile (W) 816.56 820.59 575.15

95th Percentile (W) 827.75 833.44 735.26

Table 4.2: Power consumption statistics for Aurora, Electron FF, and Electron BP
under a static power cap. Electron BP experiences the highest power peaks and
makespan but the lowest mean, median, 90th percentile, and 95th percentile.

4.5.1 Effects of Static Power Capping

Aurora-S

Setting a static cap for the entire cluster resulted in many improvements when com-

pared to the uncapped run. Aurora-S experienced a 16% reduction in the 95th per-

centile of power across the cluster. The max peak power was reduced by 17% while

overall energy consumption was reduced by 4%. However, static capping also resulted

in a 14% increase in makespan. Mean CPU time decreased by 3% while memory uti-

lization increased by 7%.

Electron FF-S

Electron FF run under static capping (Electron FF-S) experienced a 14% reduction

in the 95th percentile of power and a 25% reduction of the max peak power draw when

compared to its uncapped run. Electron FF-S experienced a makespan increase of 2%.

Overall energy was reduced by 5%. Mean CPU time increased by 12%. The increase

in CPU time can be attributed to the fact that the clock speed of the processor is

decreased by RAPL in order to satisfy the power cap placed. Thus, the number of
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Figure 4.5: Cluster-wide CPU & Memory Utilization for Aurora and Aurora running
under a static power cap.

clock ticks taking place in a second is reduced, and so is the amount of work a core

is able to do. Thus, it takes more CPU time to do the same work that was done by

the uncapped run.

Electron BP-S

Electron BP-S finished all workloads with an increase in makespan of 8% in compar-

ison to the uncapped run. The power in the 95th percentile increases as well by 4%.

However, the max peak power experienced a decrease of 22% and overall energy was

reduced by 5%. Mean CPU Time increased 9% while mean memory usage increased
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Figure 4.6: Cluster-wide Power Consumption for Aurora and Aurora running under
a static power cap.

by 24%.

4.5.2 Effects of Extrema Power Capping

Electron FF-E

Electron with a First Fit policy running under Extrema capping (Electron FF-E) ex-

periences a similar makespan to the uncapped run, differing by less than 1%. However,

when compared to the static capped run, Electron FF-E experiences a decrease in

49



Figure 4.7: Cluster-wide Energy Consumption for Aurora and Aurora running under
a static power cap.

Electron FF-E Electron BP-E

Makespan (s) 1533 1616

Power Max (W) 1138.62 1000.31

Power Mean (W) 627.75 525.81

Power Median (W) 655.40 524.48

90th Percentile (W) 762.83 575.28

95th Percentile (W) 786.04 724.46

Table 4.3: Power consumption statistics for Electron FF and Electron BP under
an extrema dynamic power cap. The only metric in which Electron FF bests the
performance of Electron BP is on makspan.

makespan of 2%. The power readings in the 95th percentile are improved in Electron

FF-E by 19% and 6% when compared to Electron FF and Electron FF-S respectively.

50



Figure 4.8: Cluster-wide CPU & Memory Utilization for Electron First Fit, Electron
First Fit running under static cap, and Electron First Fit running under the extrema
dynamic cap.

The max peak power of Electron FF-E decreased by 8% compared to the uncapped

run while it fared worse against the static capped run with an increase of 23%. The

difference in the max peak power draw between Electron FF-S and Electron FF-E

is the result of the Extrema capping algorithm being reactive to power trends. As

such, it’s only after the power spike which occurs when all benchmarks are scheduled

across the cluster, that it reacts to the trend by capping nodes. Future work will

explore adding the ability to mitigate these initial power spikes. Energy consumption

is lowered by 8% compared to Electron FF and 3% to Electron FF-S. Mean CPU time
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Figure 4.9: Cluster-wide Power Consumption for Electron First Fit, Electron First Fit
running under static cap, and Electron First Fit running under the extrema dynamic
cap.

is 4% higher compared to the uncapped run and 8% lower compared to the statically

capped run. Mean memory consumption increased by 137% compared to Electron

FF but was only 2% lower than Electron FF-S, leading us to believe that the memory

consumption experienced by Electron FF is an outlier.
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Figure 4.10: Cluster-wide Energy Consumption for Electron First Fit, Electron First
Fit running under static cap, and Electron First Fit running under the extrema
dynamic cap.

Electron BP-E

Electron with a Bin Packing policy running under Extrema capping (Electron BP-E)

finishes at roughly the same time as Electron BP with a 2% difference in makespan

between Electron BP and Electron BP-E. The 95th percentile of power consumption

for Electron BP-E is higher by 2% than Electron BP and lower by 2% when compared

Electron BP-S. The max peak power consumption is decreased compared to the un-

capped run by 17%, while it resulted in an increase of 6% compared to the static

capped run. These results in max peak power are also the result of initial power
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Figure 4.11: Cluster-wide CPU & Memory Utilization of uncapped Electron Bin
Packed, statically capped Electron Bin Packed and Electron Bin Packed running
under Extrema capping.

peaks when jobs are started as described in section 4.5.2.

4.6 Conclusion

Static capping is not particularly suited for the co-locating nature of cloud work-

loads nor the abstraction layer provided by Mesos as it results in larger makespans.

Dynamic capping, such as Extrema, is a step in the right direction as it is able to

apply power capping without having the negative impact that static capping has on
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Figure 4.12: Cluster-wide Power Consumption of uncapped Electron Bin Packed,
statically capped Electron Bin Packed and Electron Bin Packed running under Ex-
trema capping.

makespan. However, Extrema is less effective in reducing max peak power in compar-

ison to static capping due to its reactive nature. The ideal dynamic capping solution

should be able to accurately predict the power consumption of co-located workloads

and power cap accordingly. There are several variables when it comes to making

such a prediction – Do the peaks of these benchmarks align when started at the same

time? How does the start time of different benchmarks affect the power consumption

of their co-location? We will explore such ideas in future work.
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Figure 4.13: Cluster-wide Energy Consumption of uncapped Electron Bin Packed,
statically capped Electron Bin Packed and Electron Bin Packed running under Ex-
trema capping.

Our framework, Electron, which is available from our laboratory’s Bitbucket repos-

itory, has the ability to be configured for scheduling policies and power capping strate-

gies. It is designed to help data center managers make informed decisions on power

spikes and energy consumption when Mesos is used as the infrastructure-wide resource

manager.

We list our findings from our experiments which also serve as an example of the

insights that our experimental setup can provide for other workloads.

• When compared to results from Electron’s First Fit, Bin Packing manages to
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maintain lower power peaks. It also results in lower CPU time. This is caused

by an increase in clock speed when nodes are bin packed, resulting in more work

done per second.

• Compared to Aurora, Electron’s Bin Packing approach reduces the total energy

usage by 6% for the tested benchmarks. Additionally, the median power usage

is reduced by 20%.

• Static capping works well when the power consumption of the benchmarks in

the workload stays below or slightly above the static cap value.

• Compared to the uncapped run, the statically capped runs show a reduced

power ceiling ranging from a decrease of 17% for Aurora to a decrease of 25%

for Electron FF.

• When comparing all results against Aurora’s performance as a baseline, Electron

BP under Extrema experiences the largest improvements in power and energy

consumption with 19% reduction in energy consumption and 28% reduction in

mean power consumption.
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Chapter 5

Exploiting Efficiency Opportunities

Based on Workloads with Electron

on Heterogeneous Clusters

Resource Management tools for large-scale clusters and data centers typically schedule

resources based on task requirements specified in terms of processor, memory, and disk

space. As these systems scale, two non-traditional resources also emerge as limiting

factors: power and energy. Maintaining a low power envelope is especially important

during Coincidence Peak, a window of time where power may cost up to 200 times the

base rate. Using Electron, our power-aware framework that leverages Apache Mesos

as a resource broker, we quantify the impact of four scheduling policies on three

workloads of varying power intensity. We also quantify the impact of two dynamic

power capping strategies on power consumption, energy consumption, and makespan

when used in combination with scheduling policies across workloads. Our experiments

show that choosing the right combination of scheduling and power capping policies
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can lead to a 16% reduction of energy and a 37% reduction in the 99th percentile

of power consumption while having a negligible impact on makespan and resource

utilization.

5.1 Introduction

Resource management in large heterogeneous clusters is essential both to effectively

use the available resources (such as processors, memory, and storage) and to reduce

the cost in terms of the power envelope and energy usage. Apache Mesos [25] has

emerged as the leader in the resource management space in the open source commu-

nity. Mesos is akin to a distributed operating system, pooling together the available

cores, system memory, and disk space for consumption by the applications on the

cluster. Mesos’ two-level scheduling scheme, along with its fair resource distribution

policy, has shown to be successful for massive workload execution. Other efforts,

such as Hadoop’s YARN [71], Docker Swarm [51], and Kubernetes [8], work in a sim-

ilar manner. These cluster management tools have generated interest in the science

and academic computing environments due to the recent availability of virtualized

clouds for production use such as JetStream [67] and Chameleon [9]. However, Mesos,

YARN, Swarm, and Kubernetes do not have support for considering energy budgets

and power envelope in their off-the-shelf packages.

Mesos, Hadoop’s YARN, Docker’s Swarm, Google’s Kubernetes and other tools

in this space, are designed to allow co-scheduling of workloads on worker nodes. As

tasks are co-scheduled, the power they draw from the node is dependent on how

efficiently co-scheduled tasks use hardware resources and how the peak power draws

of tasks align. Coincident Power is the total power drawn from the cluster at any
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time. This value is dependent on the power consumed by all the tasks executing in the

same instant. This includes the supporting software stack and hardware components.

Ensuring that the cluster’s desired power envelope is not breached requires workload

shifting to ensure that the power peaks of various tasks do not align. Maintaining

low power usage is especially important during the Coincidence Peak, a window of

time where power may cost up to several times the base rate [42].

It is known that optimally co-scheduling applications to minimize peak power us-

age can be reduced to a multi-dimensional Bin-Packing problem and is NP-Hard [46].

Previously [16], we used Mesos and Aurora [4] to demonstrate how a policy driven

approach, involving Bin-Packing workloads, can effectively reduce peak power con-

sumption and energy usage. In our previous work [14], we introduced a pluggable

power aware framework for Mesos, Electron. In this work, we deploy Electron with

three different workloads, four different scheduling algorithms, and two different power

capping strategies to quantify the effects that the different combinations of these three

components have on power consumption, total energy consumption, and makespan.

Our workloads are composed of the DaCapo benchmarks [6], Phoronix bench-

marks [57], and Scientific micro-benchmarks. The DaCapo benchmark suite is a set

of open source, real-world applications that exercise the various resources within a

compute node, while the Phoronix and scientific workloads are microbenchmarks.

Our approach measures and monitors the power usage of CPU and Memory for each

node using fine-grained power profiles provided by Intel’s Running Average Power

Limit (RAPL) [10] counters via the Linux Powercapping framework [58]. We use the

power profiling data for a given benchmark and determine the approximate power

usage.

60



We make the following contributions in this paper:

• We profile several different, well understood benchmarks and classify them using

k-means clustering into low power consuming tasks and high power consuming

tasks based on their power consumption.

• In contrast to the single type of workload used in our previous work [14], we use

the benchmark classification to construct three kinds of workloads, each varying

in power consumption. The different workloads are then used to quantify the

power, energy, and makespan characteristics of the combinations of various

scheduling policies and power capping strategies.

• We include two new scheduling policies and analyze their effect on power con-

sumption, energy consumption, and makespan when used to schedule the dif-

ferent categories of workloads.

• We introduce a new power capping strategy to overcome certain limitations of

the power capping strategies discussed in our previous work [14] and to further

dampen large fluctuations in power consumption.

• We make recommendations based on our findings, on how different scheduling

policies and power capping strategies should be used to satisfy Coincident Peak

constraints and energy consumption requirements for a Mesos-based cluster.

5.2 Electron

In our previous work [14], we introduced Electron, a pluggable power conscious frame-

work that runs on Mesos. A high level view of Electron’s architecture is shown in
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Figure 5.1: Architecture of Electron and Mesos. Electron’s Scheduler component
receives resource offers from Mesos and uses them to schedule tasks on worker nodes.
The Power Capper component analyzes the power consumption of the worker nodes
and decides whether or not to power cap one or more worker nodes.

Figure 5.1. Electron was built with both pluggable scheduling policies and pluggable

power capping strategies. Electron is comprised of three main components: Task

Queue, Scheduler, and Power Capper.

Task Queue: Maintains the tasks that are yet to be scheduled.

Scheduler: Checks whether the resource requirements for one or more tasks, in the

Task Queue, can be satisfied by the resources available in the Mesos resource offers. If

yes, those tasks are scheduled on the nodes corresponding to the consumed resource of-

fer.

Power Capper: Responsible for power capping one or more nodes in the cluster,
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through the use of RAPL [61]. The Power Capper monitors the power consumption

of the nodes in the cluster, which is retrieved through the use of Performance Co-Pilot

[55]. A power capping policy that is plugged into Electron uses this information to

make the decision to power cap one or more nodes in the cluster.

5.2.1 Power Classes

We categorized the machines in our cluster into four power classes: A, B, C, and

D, based on their Thermal Design Power (TDP). We made each node advertise its

power class to the Mesos master, leveraging the feature of Mesos to allow agents to

advertise arbitrary resources. The specifications of the machines belonging to each

power class is described in Section 5.3.1.

5.2.2 Consuming Mesos Offers

First-Fit (FF)

For each offer the framework receives, it finds the first task in the job queue whose

resource constraints are satisfied by the resources available in the offer. If a match

is made between an offer and a task, the offer is consumed in order to schedule the

matching task. Otherwise, it moves on to a new resource offer and the process of

finding a suitable task is repeated.

Bin-Packing (BP)

For each offer that is received by the framework, tasks are matched from the priority

queue keyed by an approximation of the worst case power consumption using Median

of Medians Max Power Usage (M3PU) described in more detail in Section 5.3.3. If
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a task’s resource requirements are not satisfied by the remaining resources, the next

task in the queue is evaluated for fitness. We repeat this process until no task from

the queue fits in the remaining resources. The offer is then consumed and the set of

tasks evaluated to fit are scheduled to run.

The distribution of the workload when using Bin-Packing as the method of con-

suming Mesos offers for a Moderate Power Consuming workload is shown in Figure

5.2. Bin-Packing can lead to uneven distribution of tasks such that one class of ma-

chines handles roughly 44% of the work, compared to the other three power classes.

Max-Min (MM)

Although Bin-Packing reduces peak power consumption compared to a First-Fit pol-

icy, BP commonly leads to excessive co-location of high power consuming tasks which

creates contention for resources, which results in stragglers and therefore a larger

makespan. Max-Min is able to address this issue by picking a mixed set of tasks from

the queue. Max-Min uses a double-ended queue (deque) sorted in non-decreasing

M3PU values, alternating between attempting to schedule tasks from the front and

the back of the deque. If a task fits in the offer, the count of available resources is

reduced and the process is repeated. If there are no more tasks that fit in an offer

from the deque, Max-Min moves on to the next offer.

The distribution of tasks when Max-Min is used as the scheduling policy for a

Moderate Power Consuming workload is shown in Figure 5.3. Max-Min results in the

resources contained in an offer to be consumed in quicker succession, thereby leading

to a better distribution of the workload across the cluster. Notice in the figure that

the workload is better distributed among the power classes as compared to Figure
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5.2. However, Max-Min does not show a noticeable improvement in the distribution

of high power consuming tasks when compared to Bin-Packing.

Max-GreedyMins (MGM)

Through experimentation we found that Max-Min has a significant impact on makespan

when there is a higher proportion of low power consuming tasks. We created Max-

GreedyMins (MGM) to counter MM’s impact on makespan, and to further reduce

peak power and energy consumption. MGM consumes offers by packing the low

power consuming tasks at a faster rate than the high power consuming tasks. Like

MM, unscheduled tasks are stored using a deque sorted in non-decreasing M3PU.

MGM, as shown in Algorithm 3, attempts to pack tasks into an offer by picking one

task from the end of the deque and as many tasks from the beginning of the deque

until no more tasks can be fit into the offer. Once no more tasks fit in the resources

available from the offer, the policy moves on to the next Mesos offer and repeats the

process.

The distribution of the workload when MGM is used as the scheduling policy

for a Moderate Power Consuming workload is shown in Figure 5.4. Not only does

MGM more evenly distribute the workload across the cluster, but it also betters the

distribution of high power consuming tasks when compared against Figure 5.3. This

increase in distribution of high power consuming tasks would help reduce starvation,

thereby also reducing the impact on makespan.
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Algorithm 3 Max-GreedyMins

1: sortedTasks – Tasks to schedule sorted in non-decreasing order by their corre-
sponding M3PU value.

2: offer – Mesos offer.
3: procedure Max-GreedyMins(offer, sortedTasks)
4: for task in sortedTasks.Reverse() do
5: if Fit(offer.UnusedResources(), task) then

offer.schedule(task)
sortedTasks.remove(task)
break

6: end if
7: end for
8: for task in sortedTasks do
9: for instance in task.Instances() do

10: if Fit(offer.UnusedResources(), task) then
offer.schedule(task)

sortedTasks.remove(task)
11: else

break
12: end if
13: end for
14: end for
15: end procedure

5.2.3 Power Capping Policies

Extrema

In our previous work, we presented [14] a dynamic power capping strategy, Extrema,

which is able to make trade-offs between makespan and power consumption. Extrema

reacts to power trends in the cluster and restraints the power consumption of the

cluster to a power envelope defined by a high and low threshold. If the cluster’s

Average Historical Power (AHP) exceeds the high threshold, the node consuming the

highest power is power capped to half its Thermal Design Power (TDP). TDP is the

maximum expected power (turned to heat) that is expected to be dissipated, as listed
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Figure 5.2: Distribution of tasks by classification for a Moderate Power Consuming
workload when using Bin-Packing. The number of nodes for each power class is shown
in parentheses. This figure shows Class A nodes processing more power intensive tasks
than Class D nodes despite having half as many workers when using the Bin-Packing
strategy.

by the chip manufacturer. On the other hand, if the cluster’s AHP is lower than the

low threshold, a node is uncapped. Nodes are fully uncapped in the reverse order

in which they were capped. Extrema is successful in maintaining the power profile

within a defined envelope, reducing power peaks while having a subdued impact on

makespan.
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Figure 5.3: Distribution of tasks by classification for a Moderate Power Consuming
workload when using Max-Min. The number of nodes for each power class is shown
in parentheses. This figure shows Class D bearing a larger burden than the rest of
the classes with Max-Min as the scheduling strategy.

Progressive Extrema

Through experimentation we have identified a few limitations exhibited by Extrema:

1. If every node in the cluster has already been capped but the AHP is still above

the High threshold, Extrema is unable to perform any new action that may

bring the AHP down.

2. As Extrema caps nodes to 50% of their TDP and uncaps them to their full

TDP, large differences in these values can result in nodes experiencing high
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Figure 5.4: Distribution of tasks by classification for a Moderate Power Consuming
workload when using Max-GreedyMins. The number of nodes for each power class is
shown in parentheses. This figure shows Class A and Class D completing about the
same number of tasks in number with Class D processing more power intensive tasks
when using a Max-GreedyMins strategy to schedule workloads.

power fluctuations.

3. Extrema requires high and low thresholds to be manually predefined. It follows

that prior knowledge of the workload greatly benefits the configuration of the

high and low thresholds and by extension, the efficacy of Extrema.

While the last drawback still remains an open problem, we address the first two draw-

backs through a modified version of Extrema named Progressive Extrema. Progressive
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Extrema, described in Algorithm 4, is similar to Extrema except for one key differ-

ence: power capping is applied in phases. Whereas picking a previously capped node

as a victim in Extrema resulted in a no-op, in Progressive Extrema the same scenario

results in a harsher capping value for the victim. In the initial phase of Progressive

Extrema’s design, capping history is maintained for each node in an in-memory data

store. When a victim node is chosen for uncapping the previous cap value in the

node’s history is used. Since these values are determined algorithmically, this uses

O(n) additional memory. It also uses a Cap Limit that defines the floor value beyond

which a node should not be capped.

5.3 Experiments

5.3.1 Setup

Our experiments were conducted on a research cluster which comprises the following

components:

• 2 Class A nodes - Two 10 core, 20 thread Intel Xeon E5-2650 v3 @ 2.30GHz

and 128 GB RAM per node

• 1 Class B node - Two 8 core, 16 thread Intel Xeon E5-2640 v3 @ 2.60GHz and

128 GB RAM per node

• 1 Class C node - Two 8 core, 16 thread Intel Xeon E5-2640 v3 @ 2.60GHz and

64 GB RAM per node

• 4 Class D nodes - Two 6 core, 12 thread Intel Xeon E5-2620 v3 @ 2.40GHz and

64 GB RAM per node
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Algorithm 4 Progressive Extrema Capping

1: procedure ProgExtrema(Threshold,InitCap,CapLimit)
2: ClusterAvg ← AvgRunning(ClusterPower)
3: if ClusterAvg > Threshold.Hi then
4: V ictims← Sortnon−inc(AvgPowerNode[...])
5: uncappedV ictimFound← false
6: for victim in Victims do
7: if victim not in CappedVictims then
8: Cap(victim, InitCap)

9: CappedV ictims[victim.Host]← InitCap
10: uncappedV ictimFound← true
11: end if
12: end for
13: if uncappedVictimFound == false then
14: for victim in CappedVictims do
15: if victim.curCap > CapLimit then
16: newCap← victim.curCap÷ 2
17: Cap(victim, newCap)
18: CapV ictims[victim.Host]← newCap
19: end if
20: end for
21: end if
22: end if
23: if ClusterAvg < Threshold.Low then
24: victim←MaxCapped(CappedV ictims)
25: uncapV alue← CappedV ictims[victim.Host] ∗ 2
26: Uncap(victim, uncapV alue)
27: CappedV ictims[victim.Host]← uncapV alue
28: if victim.curCap == 100 then
29: delete(CappedV ictims, victim.Host)
30: end if
31: end if
32: end procedure

Each node runs a 64-bit Linux 4.4.0-64 kernel and shares an NFS server. Apache

Mesos 1.1.0 is deployed as the cluster manager. The Electron framework is used as the

sole Mesos framework to schedule workloads. Docker 1.13.1 is used as the container
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technology. Benchmarks are run inside Docker containers to ensure environment

consistency across worker nodes. Performance Co-Pilot [55] is deployed across the

cluster to collect metrics from all worker nodes. Metrics collected from worker nodes

include energy measurements from RAPL1 counters and various statistics about CPU

and memory usage from each worker node’s Linux kernel. No metrics are collected

from our Master nodes as they do not run any workload and thus have limited impact

on variable power and energy consumption.

5.3.2 Workloads

The benchmarks with which we created our Light, Moderate, and Heavy Power Con-

suming Workloads were derived from the DaCapo Benchmark suite [6], Phoronix

Benchmark suite [57], MiniFE from Mantevo [49], and Stream and Dgemm from

NERSC [53]. Benchmarks like HiBench[26] were not used as the current focus is only

on benchmarks that are designed to run on a single node in the cluster.

5.3.3 Median of Medians Max Power Usage

There are many ways of calculating a suitable global value to be used as an estimation

of the power consumption for each benchmark. For this set of experiments we opted

to use the Median of Medians of the Max Power Usage (M3PU) value for each bench-

mark as an approximation of the power consumption in our workloads (described in

Algorithm 5).

Since our cluster is heterogeneous, the estimated values varied between machines

belonging to the four different power classes described in Section 5.3.1. For each

1RAPL only supports monitoring CPU and DRAM. Thus, any references to power and energy
should be understood to mean energy consumed by CPU and DRAM.
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Test suites Description Type

Audio Encoding? Runtime measurement to encode WAV file to dif-
ferent audio formats.

CPU

Video Encoding† Video encoding tests, processor tests and system
performance testing.

CPU

Cryptography† Cryptography tests such as OpenSSL and
GnuPG.

CPU

Network Loopback? Computer’s networking performance testing. Network

Avrora? Multithreaded AVR microcontrollers simulator. CPU

Batik? Produces Scalable Vector Graphics images. Memory

Eclipse? Non-GUI jdt performance tests for the Eclipse
IDE.

CPU

Jython? Interprets the pybench Python benchmark. CPU

Pmd† Multithreaded Java source code analysis. CPU

Tradebeans? Daytrader benchmark run on GERONIMO with
an in-memory H2 DB.

Memory

H2? Executes transactions against a model of a bank-
ing application.

Memory

Xalan† Multithreaded XML to HTML converter. Mixed

Sunflow† Renders a set of images using ray tracing. CPU

miniFE[49]? Finite element generation, assembly and solution
for an unstructured grid problem.

CPU

DGEMM[62]† Multi-threaded, dense-matrix multiplication. CPU

STREAM[31]? Calculates sustainable memory bandwidth and
the computation rate for simple vector kernels.

Memory

Table 5.1: Workload benchmarks
The † symbol indicates a High Power Consuming benchmark while the ? symbol
indicates a Low Power Consuming benchmark as determined through profiling and
k-means clustering.

benchmark, ten profiling runs were recorded on four nodes, one for each class. The

max peak was found for each of the ten runs. Each power class then had ten max peaks

from which the median was calculated. From the median we subtracted the median

static power for each power class, generating a Median Max Power Usage (MMPU)

of the benchmark for each power class. We used these values as an approximation
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Algorithm 5 Median Median Max Power Usage (M3PU)

1: R ← Number of individual runs.
2: P ← Power.
3: Peaks ← Power peaks per run.
4: PC ← Power Classes.
5: procedure M3PU(Benchmarks[...], PC[...])
6: for bm in Benchmarks do
7: MMPU ← List()
8: for pc in PC do
9: peaks← bm.getPeaks(pc)

10: mmpuPc← Benchmark MMPU(peaks, pc)
11: MMPU [...]← mmpuPc
12: end for
13: M3PU [bm]←Median(MMPU [...])
14: end for
15: end procedure
16: procedure Benchmark MMPU(Peaks[R][P ], PC)
17: MaxPeaks← List(R)
18: for i in 0 to R-1 do
19: MaxPeaks[i]← MaxPeak(Peaks[i])

20: end for
return Median(MaxPeaks) - StaticPowerPC

21: end procedure

of the worst case power consumption of the benchmark on any node in that power

class. The four MMPU values were used as observations for our task classification

described in Section 5.3.4.

In order to be able to build the data structures required for our scheduling policies

we required a single value as a point of comparison for sorting. We opted to use the

Median of the four MMPU values which represents a cluster-wide central tendency of

power usage for each benchmark, resulting in a Median of Medians Max Power Usage

(M3PU) for each benchmark.
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5.3.4 Task Classification

Using the well known k-means clustering algorithm with the four MMPU values of

each benchmark as observations, we classified benchmarks into two categories: low

power consuming and high power consuming. As a benchmark can be scheduled on

any node in the cluster, the power consumption of the benchmark on different power

classes needs to be considered. For this reason, the MMPU values for each power class

were used as the observations instead of the global approximation M3PU value. The

classification of our benchmarks can be seen in Table 5.1. Using this classification we

created three kinds of workloads: Light, Moderate, and Heavy. Each workload has a

different ratio of low power consuming tasks to high power consuming tasks: Light

(20:3), Moderate (10:6), and Heavy (5:12).

5.4 Performance Analysis

In this section, we analyze the performance of different strategies for consuming Mesos

offers: First-Fit (FF), Bin-Packing (BP), Max-Min (MM), and Max-GreedyMins

(MGM). We also study the effect of two power capping strategies, Extrema and

Progressive Extrema, when used with each scheduling policy. To further discover

strengths and weaknesses of a combination, we run three workloads: Light, Moder-

ate, and Heavy. We quantify each combination of scheduling policy, power capping

strategy, and class of workload based upon the following aspects: (1) ability to reduce

peak power consumption, (2) ability to reduce energy consumption, and (3) impact

on makespan.
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5.4.1 Performance of Scheduling Policies

Tables 5.2, 5.3, and 5.4 compare the energy, makespan, and the 95th percentile in

power consumption, for different scheduling policies for a Light, Moderate, and Heavy

Power Consuming Workload respectively.

Figure 5.5: Power consumption of Light Power Consuming Workload when scheduled
with different scheduling policies.
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FF BP MM MGM

Power (W) 1072.75 1033.1 1039.2 1094.8

Makespan (s) 1319 1417 1544 1122

Energy (kJ) 858 844.6 761.9 793

Table 5.2: Comparison of the effects of different scheduling policies for a Light Power
Consuming Workload.

Light Power Consuming Workload

Figure 5.4.1 shows the power profiles of the execution of the Light Power Consuming

Workload (LPCW) when using the previously mentioned scheduling policies.

Power: Both BP and MM experience improvements in the 95th percentile of power

consumption when compared to FF and MGM, where BP slightly improves over MM

by 6.1 Watts. The low power envelope for MM can be attributed to the fact that

a larger number of high power consuming tasks complete execution earlier, leaving

behind only low power consuming tasks running on the cluster.

Makespan: BP and MM experience a significant increase in makespan when com-

pared to FF. The increase in makespan for BP can be attributed to excessive co-

location of high power consuming tasks at a later execution stage, leading to an

increase in resource contention for some nodes. Although MM address one of BP’s

shortcomings by scheduling high power consuming tasks earlier in the scheduling

process, it suffers an increase in makespan as a result of delaying of the execution

of many of the low power consuming tasks, leading to decreased throughput. From

Table 5.2, we can see that MGM experiences a marked improvement in makespan

when compared to FF, BP, and MM. MGM achieves this improvement by reducing

the co-location of high power consuming tasks while concurrently consuming an in-

creased amount of low power consuming tasks, thus being particularly beneficial for
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the ratio of low power consuming tasks to high power consuming tasks in the LPCW.

Energy: Although BP shows a slight improvement in energy consumption when

compared to FF, the impact on makespan incurs a severe static power penalty. On

the other hand, MM and MGM show a significant reduction in energy consumption

when compared to BP and FF. Furthermore, MM experiences a 31.1 kJ reduction

in energy consumption when compared to MGM. Although MM incurs a makespan

penalty, it achieves this low energy consumption by maintaining a low power enve-

lope. In contrast, MGM does not have a huge impact on the power peaks, but the

significant reduction in makespan leads to an improvement in energy consumption as

it avoids static power penalties.

Moderate Power Consuming Workload

FF BP MM MGM

Power (W) 1032.9 957 980 1049.4

Makespan (s) 1521 1602 1575 1450

Energy (kJ) 1183.8 1031 918.3 891.7

Table 5.3: Comparison of the effects of different scheduling policies for a Moderate
Power Consuming Workload.

Figure 5.6 shows the power profiles of the execution of the Moderate Power Con-

suming Workload (MPCW) using the previously mentioned scheduling policies.

Power: Table 5.3 shows an improvement in the 95th percentile of power consump-

tion for BP when compared to FF, MM, and MGM. However, MGM experiences a

substantial reduction in the 90th percentile (not shown in the table) of power con-

sumption, improving over FF, BP, and MM by 304 Watts, 88.8 Watts, and 39.8 Watts
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Figure 5.6: Power consumption of Moderate Power Consuming Workload when sched-
uled with different scheduling policies.

respectively. This discrepancy between 90th and 95th percentile in power consump-

tion for MGM can be attributed to early execution of high power consuming tasks,

leading to a high initial spike of power consumption. Throughout the rest of execu-

tion, MGM maintains a lower power profile in comparison to the other scheduling

policies.

Makespan: BP suffers an increase in makespan when compared to FF, MM, and

MGM, which can be attributed to BP co-locating several high power consuming tasks
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late in the task allocation process. This excessive co-location leads to an increase in

contention for resources, thus increasing the completion times for these high power

consuming tasks. MGM’s reduction in makespan can be attributed to better distri-

bution of high power consuming tasks across the worker nodes.

Energy: Although BP reduces the power envelope, the increase in makespan reduces

the impact it has on the energy consumption due to the static power penalty. How-

ever, BP still consumes 152.8 kJ less than FF. On the other hand, MM and MGM are

able to achieve a more heterogeneous mix of low power consuming and high power

consuming tasks, thereby reducing energy consumption. As MGM results in a fur-

ther increase in the distribution of high power consuming tasks across the cluster, it

experiences a 26.6 kJ reduction in energy consumption when compared to MM.

FF BP MM MGM

Power (W) 1098.2 1006.5 1110.7 1028.2

Makespan (s) 1630 1683 1626 1697

Energy (kJ) 1546.4 1380.1 1259.1 1226.9

Table 5.4: Comparison of the effects of different scheduling policies for a Heavy Power
Consuming Workload.

Heavy Power Consuming Workload

Figure 5.7 shows the power profiles of execution of the Heavy Power Consuming

Workload (HPCW), using various scheduling policies.

Power: As the HPCW contains an increased number of high power consuming tasks,

we can see a clear increase of power envelopes for all the policies. Table 5.4 shows that

BP experiences a substantial reduction in the 95th percentile of power consumption

when compared to FF. Furthermore, BP is better than MM by 104.2 W in the 95th

percentile of power consumption. Although MM improves the distribution of tasks
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Figure 5.7: Power consumption of Heavy Power Consuming Workload when scheduled with
different scheduling policies.

across the cluster, it does not have a substantial impact in reducing the excessive

co-location of high power consuming tasks for this power intensive workload. MGM,

however, shows an improvement in the 95th percentile when compared to FF, BP,

and MM, and this reduction can be attributed to a decrease in the co-location of high

power consuming tasks, leading to a reduction in coincident peaks.

Makespan: Although MGM shows an improvement in power consumption, it delays
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the start time of execution of the high power consuming tasks. This increase in la-

tency for power intensive tasks leads to an increase in makespan, as seen in the data

shown in Table 5.4. In addition, as the workload gets more power intensive, MGM’s

detrimental impact on makespan might become more prominent. MGM shows a simi-

lar makespan to BP, posting just a 14 second difference, but the increase in makespan

for BP can be attributed to resource contention of excessively co-located high power

consuming tasks.

Energy: BP experiences a significant reduction in energy consumption when com-

pared to FF, as seen in Table 5.4. Furthermore, MM and MGM experience a decrease

in energy consumption when compared to BP. Although MM experiences a slight in-

crease in energy consumption of around 32 kJ when compared to MGM, MM would

be a more appropriate choice when scheduling a higher ratio of high power consuming

tasks as MGM is more likely to have a negative impact on makespan as the ratio of

high power consuming benchmarks to low power consuming benchmarks increases.

Eventually, the increase in makespan would lead to the static power penalty nullifying

energy decrease from maintaining a lower power envelope.

5.4.2 Power Capping Impact On Scheduling

In this section we quantify the impact of our set of Power Capping Strategies {Extrema,

Progressive Extrema} across our set of different scheduling policies, {FF, BP, MM,

MGM}.
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Figure 5.8: Uncapped workloads. Comparison of Cluster-wide Energy Consumption
of different scheduling policies when used to schedule different classes of workloads
(Light, Moderate and Heavy).

Extrema

Figures 5.11 to 5.13 show the effect of using the Extrema power capping strategy

when used alongside different scheduling policies for the Light, Moderate, and Heavy

Power Consuming Workloads (LPCW, MPCW, and HPCW respectively).

Power: Figure 5.11 shows the power profiles when Extrema is run alongside the dif-

ferent scheduling policies for the LPCW. Compared to their uncapped runs, FF, BP,

MM, and MGM experience a reduction in the 95th percentile of power consumption
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Figure 5.9: Extrema capped workloads. Comparison of Cluster-wide Energy Con-
sumption for different scheduling policies and classes of workloads in combination
with the Extrema dynamic power capping strategy.

of 231 Watts, 190 Watts, 193 Watts, and 251 Watts, respectively, when running un-

der the Extrema capping policy. For the MPCW, shown in figure 5.12, FF, BP,and

MGM experience an improvement of 220 Watts, 74 Watts, and 7 Watts, respectively,

in the 90th percentile of power consumption compared to the uncapped runs. On

the other hand, MM with Extrema experiences an increase of 23 Watts in the 90th

percentile of power consumption for the MPCW compared to its uncapped run. The

effect of Extrema on MM is likely due to the size of tasks in the deque and the time

Extrema needs to place and adjust power caps on each node. When all higher energy
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Figure 5.10: Progressive Extrema capped workloads. Comparison of Cluster-wide
Energy Consumption for different scheduling policies and classes of workloads in
combination with the Progressive Extrema dynamic power capping strategy.

jobs remain in the deque after the lower energy jobs have been exhausted, the power

capping gets more aggressive and the cluster remains capped for a longer period of

time. More investigation into the exact circumstances that lead to a power increase in

this instance is the subject of future work. When scheduling the HPCW, the schedul-

ing policies FF, BP, MM, and MGM show an improvement in the 90th percentile of

power consumption (relative to their uncapped runs) of 118.5 Watts, 94.2 Watts, 116

Watts, and 35 Watts respectively.

Makespan: Extrema does not impact the makespan of FF as the workload is well
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Figure 5.11: Power profile of Light Workload run under Extrema capping.

distributed across the cluster. However, when Extrema is used alongside BP, the

makespan is increased by 128 seconds, 67 seconds, and 76 seconds for LPCW, MPCW,

and HPCW respectively. When Extrema is used alongside MM for the LPCW and

MPCW, the makespan is not affected. On the other hand, when Extrema is used

alongside MM for the HPCW, it experiences an increase in makespan of 94 seconds.

This increase is due to RAPL lowering CPU clock speeds to stay within a power

budget which has an adverse effect on the larger number of high power consuming

tasks in contention for system resources. When Extrema is used alongside MGM,
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Figure 5.12: Power profile of Moderate Workload run under Extrema capping.

there is an increase in makespan of 236 seconds for the LPCW, and 179 seconds for

the MPCW. This indicates that Extrema combined with MGM is not a good fit for

systems that want to maintain a high Service Level Agreement (SLA) for processing

LPCW and MPCW. There is no impact on the makespan when Extrema is used with

MGM for the HPCW, shown in figure 5.13, as MGM is better at distributing the high

power consuming tasks across the cluster as compared to BP and MM.

Energy: In general, Extrema’s reduction in peak power consumption is much more

prominent than Extrema’s increase in makespan. This leads to Extrema lowering the
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Figure 5.13: Power profile of Heavy Workload run under Extrema capping.

energy consumption for FF, BP, MM, and MGM for MPCW and HPCW. Figure 5.9

shows that when Extrema is used for the MPCW, the scheduling policies FF, BP,

and MM experience a reduction in energy consumption of 171kJ, 53kJ, and 159kJ

respectively when compared to their uncapped runs, while MGM, experiences an in-

crease of 77 kJ in energy consumption compared to its uncapped run. When Extrema

is used for the HPCW, our results show that compared to their uncapped runs, FF,

BP, and MM experience a reduction of 191kJ, 73 kJ, and 25 kJ respectively, while

MGM experiences an increase of 24kJ. The increase in energy consumption for MGM
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Figure 5.14: Power profile of Light Workload run under Progressive Extrema capping.

for MPCW as well as HPCW can be attributed to the delayed start time for the high

power consuming tasks, thus incurring a heavier static power penalty.

Progressive Extrema

The graphs in Figures 5.14 to 5.16 show the effect of using the Progressive Extrema

power capping strategy alongside the scheduling policies described above for the Light

(LPCW), Moderate (MCPW), and Heavy (HPCW) Power Consuming Workloads.

Power: Compared with the uncapped runs and against the Extrema capped runs,
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Figure 5.15: Power profile of Moderate Workload run under Progressive Extrema
capping.

Progressive Extrema reduces the initial power draw on a cluster. The initial power

peaks are around 1200 Watts for the uncapped runs, around 830 Watts for the Ex-

trema power capped runs, and have been reduced to around 600 Watts for the LPCW

and MPCW, shown in Figures 5.14 and 5.15. This reduction can be attributed to

Progressive Extrema being able to more aggressively cap the already capped nodes,

thereby quickly bringing down the power envelope closer to the predefined high and

low thresholds. Analyzing the results shown in Figures 5.14 to 5.16, we observe
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Figure 5.16: Power profile of Heavy Workload run under Progressive Extrema cap-
ping.

that when compared to their corresponding uncapped runs, shown in Figures 5.4.1,

5.6, and 5.7; FF, BP, MM, and MGM experience a substantial reduction in the 95th

percentile (p95) of power consumption. FF experiences a p95 reduction in power con-

sumption of 368, 374, and 141 Watts for LPCW, MPCW, and HPCW respectively.

BP experiences a p95 reduction in power consumption of 405, 297, and 133 Watts for

the LPCW, MPCW, and HPCW respectively. MM experiences a p95 reduction in

power consumption of 457, 260, and 251 Watts for the LPCW, MPCW, and HPCW
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respectively. Finally, MGM experiences a p95 reduction in power consumption of 387,

401, and 155 Watts for the LPCW, MPCW, and HPCW respectively.

Makespan: Progressive Extrema has a negative impact on makespan as it is aggres-

sive in power capping the nodes. For the LPCW, FF, MM, and MGM experience

an increase in makespan of 394, 293, and 396 seconds, respectively, when compared

to their corresponding energy consumptions shown in Figure 5.8. However, BP does

not experience a significant impact on makespan for the LPCW when compared to

its uncapped run. FF, BP, MM, and MGM experience an increase in makespan of

336, 53, 189, and 341 seconds, respectively, for the MPCW, when compared to their

corresponding uncapped runs. BP and MM experience an increase in makespan of

102 and 52 seconds, respectively, for the HPCW. FF and MGM, however, due to a

more even distribution of high power consuming tasks, do not experience an impact

in makespan for the HPCW.

Energy: Although Progressive Extrema proves to be beneficial in significantly reduc-

ing the power envelopes and reducing the power fluctuations, the significant impact

on makespan leads to Progressive Extrema not having a substantial improvement in

energy consumption when compared to uncapped runs.

5.5 Conclusion

From our results we conclude that there are trade-offs that must be made in order

to operate a cluster under a specific set of constraints. Some policies favor lowering

the height of power peaks in the cluster, while others favor a reduced makespan,

still others favor lower energy consumption, and any combination in between is also

permissible. Although Max-Min and Max-GreedyMins often outperform First-Fit
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and Bin-Packing, we acknowledge these scheduling policies may cause starvation for

tasks in workloads that are somewhere between Light and Heavy Power Consuming.

Guarding against task starvation is not addressed in this paper and will be the subject

of future work. Based upon our findings we have developed a few heuristics to help

owners of Mesos-powered Data Centers schedule toward some of the goals presented

above:

• Using an incorrect combination of scheduling policy and power capping strategy

can lead to undesired outcomes such as increased energy consumption and larger

makespans.

• Max-GreedyMins should be used when a workload requires high throughput

and the scheduling time does not fall within Coincidence Peak, regardless of

the power intensity of the workload.

• When the workload consists of a higher proportion of high power consuming

tasks, scheduling policies, such as Max-Min, would be the more appropriate

choice. On the other hand, if the workload consists of a higher proportion of

low power consuming tasks, then scheduling policies, such as Max-GreedyMins,

would be the more appropriate choice.

• To decrease power peaks and energy consumption, Extrema is best deployed as

the power capping strategy to schedule Light and Moderate Power Consuming

workloads while Progressive Extrema is best suited for Heavy Power Consuming

workloads.

In our future work, we plan to develop a policy switcher that can switch between

different scheduling policies and power capping strategies, so as to be able to handle
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a continuously changing workload.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Compared to First Fit scheduling strategies, Bin Packing variants provide various

levels of reduced energy and power consumption. Energy consumption improvements

are due longer makespan in cases where resource fragmentation prevents tasks with

high resource requirements from starting their execution. This leads to an increase

in static power consumption, a penalty incurred for simply maintaining the cluster

online, to have an adverse effect on the overall Watts necessary to finish a workload.

Of the Bin Packing variants, each has strengths and weaknesses that make each

better suitable for different workloads. For heavy power consuming workloads, a

policy of Max Min is best suited to reduce energy and power consumption while

maintaining an acceptable makespan. A workload with a higher quantity of low

power consuming tasks will see benefit in the same metrics from using a Max Greedy

Mins based scheduling algorithm.
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Finally, Power capping a cluster without impacting workload makespan is diffi-

cult. When a node is capped, it is limited in how much work it is able to carry out

due to RAPL forcing processors to maintain a higher P-state and thus a lower clock

frequency. The three strategies presented in this thesis all have strengths and weak-

nesses. Static capping provides a safe guard against coincidence peak power, however,

its impact on makespan has a detrimental effect on energy consumption due to static

power consumption. Extrema presents a more fine tuned approach, making decisions

to cap or uncap nodes based upon the recent power trends in the cluster. This leads

to reduced power and energy consumption in most cases while having minimal impact

on the time it takes to complete a batch of tasks. Progressive Extrema expands upon

Extrema by providing several rounds of power capping, each more aggressive than

the previous. This results in a lower peak power draw, sometimes at the cost of a

longer makespan. However, even with a longer makespan, several workloads experi-

enced a large enough of a decrease in power consumption such that the static power

consumption penalty was overcome.

6.2 Future Work

6.2.1 Watts As A Resource (WaaR)

For every hardware component present in a node that provides resources tradition-

ally accounted for, such as CPU, Memory, and Disk, there is a power consumption

associated with its use. Power usage itself, however, is not usually among the re-

sources accounted for that are necessary to perform a computation. Yet it is one of

the toughest limiting factors to overcome in order for modern processors to improve
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Figure 6.1: Cluster-wide CPU Utilization when WaaR is deployed and the cryptogra-
phy benchmark is included. Electron FF-WaaR and Electron BP-WaaR use far less
power and CPU time, but suffer a larger runtime.

[68]. In this thesis, we have looked at addressing the issue of co-incident peak power

consumption and energy consumption through the use of static and dynamic power

capping but we believe the most efficient way to address this problem is by promot-

ing watts as a first class scheduling parameter. By introducing Watts as a Resource

(WaaR) we are able to account for power in the same way other resources, such as

CPU, Memory and Disk, are accounted for. As with CPU, Memory, and Disk, the

closer our we are able to bring our theoretical accounting of Power consumption to
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Figure 6.2: Cluster-wide Power Utilization when WaaR is deployed and the cryp-
tography benchmark is included. The Power ceiling is lowered by the deployment of
Watts as a Resource. Cryptography is the highest Power consuming benchmark in
our set, causing it to starve when we decrease the number of Watts as a resource
available in the cluster.

match that of the real world consumption, the more efficiently we are able to man-

age cluster wide power-consumption. Our initial experiments and results shown in

Figures 6.1 to 6.3 show there may be some promise in developing this technique. In

our experiments, we observed a big trade-off between the power ceilings and runtime.

With WaaR enabled, Electron’s Bin-Packed runtime is around 2.58 times as long as

Aurora’s runtime, while Electron First-Fit fared a bit worse at 2.78 times as long as

Aurora’s runtime. However, it is encouraging that the median power consumption
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Figure 6.3: Cluster-wide Memory Utilization when WaaR is deployed and the cryp-
tography benchmark is included.

for Electron First-Fit was around 43% and Electron Bin-Packing was around 51%

of Aurora’s median power consumption, while the peak power reduced by 30% for

Electron First-Fit WaaR and 19% for Electron Bin-Packed WaaR.

An obvious downside of the WaaR approach is that workloads that are CPU

intensive may starve as their power needs may only be met by a small subset of

the Mesos offers. An example of such a case is the Cryptography benchmark, which

is CPU intensive. The difference can be observed in Figure 6.5 where the same

experiment seen in Figure 6.2 was repeated without the inclusion of Cryptography.
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Figure 6.4: Cluster-wide CPU Utilization when WaaR is deployed but the cryptog-
raphy benchmark is not included.

Watts as a Resource does better in this case by improving over Aurora in runtime

and power ceiling. It is possible to identify stragglers in advance, so that they can

be tagged and the watts limits can be relaxed, for exactly the windows at which such

workloads have to be executed. Additionally, it is possible to use our experimental

setup to determine the best co-runners with such workloads. While these numbers

reflect a poor performance in terms of makespan, this is due to our naive way of

accounting for Power utilization. In this case, we used the (M3PU) of each benchmark

to symbolize how much power it would be consuming once scheduled. As we have
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Figure 6.5: Cluster-wide Power Utilization when WaaR is deployed but the cryptog-
raphy benchmark is not included.

demonstrated in this thesis,power consumption cannot be reduced to a sum of the

individual benchmarks running on a node. Therefore, a more appropriate approach

is a to approximate power consumption on a node given a set of workloads to be run

on the node.

6.2.2 Adaptive Power Aware Scheduler

With our Bin Packing, Min Max, and Max-GreedyMins policies, there is a risk of

starvation. For example, if we consider using Min Max and Max Greedy Mins as our

101



0 50 100 150 200 250 300 350

Time (s)

200

220

240

260

280

300

320
M

e
m

o
ry

 (
G

iB
)

Aurora Electron FF-WAR Electron BP-WAR

Figure 6.6: Cluster-wide Memory Utilization when WaaR is deployed but the cryp-
tography benchmark is not included.

scheduling algorithms and assume a workload contains three classification of tasks

A, B, and C. Class A tasks are high power consuming task, class B tasks are low

power consuming task, and class C tasks consume less power than class A tasks but

more than class B tasks. If there are enough class A and B tasks, class C tasks

will not be scheduled until either all class A tasks are all scheduled or all class B

tasks are consumed. Solutions to this drawback will have an impact on power and

energy consumption, and makespan. Different techniques to mitigate starvation may

be more beneficial to certain kinds of workloads.
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Using the results from the experiments in this dissertation, it may be possible to

create a scheduling policy that adapts to the power and energy consumption require-

ments for operating a cluster or the current demand from the workloads queued to

run on the cluster.

6.2.3 CPI based Power Aware Scheduler

Processors are complex pieces of hardware. At a fine-grained level, they execute

assembly instructions in the form of machine code. Instructions have possibility of

interfering with one another, causing the processor take more clock cycles to complete

an instruction. The average amount of cycles a processor takes to complete an in-

struction is a metric called Cycles Per Instruction (CPI). A processor achieving a low

CPI is able to get more work done in the same window of time as another processor.

As CPI is a proxy for how efficiently a processor is carrying out work, correlating CPI

to the amount of power consumed by a workload may open the door for a new metric

that can be used to improve energy consumption. For example, if a scheduler can be

designed to target a CPI number on each node in a heterogeneous cluster that yields

an efficient return on the power consumed, such a scheduler would be able reduce

energy consumption while maintaining, or perhaps even reducing, makespan.

6.2.4 Fine-grained Extrema

There are many ways of dynamically power capping a cluster. Extrema and Progres-

sive Extrema both approach the problem from a global perspective. That is, both

Extrema and Progressive Extrema take into account the historical power consump-

tion of the cluster as a whole when making decisions. This opens the door for further
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work on strategies that focus on the local perspective. This may involve tracking the

power consumption of each node individually and making decisions based upon that

information.

6.2.5 Considering Streaming Workloads

The experiments in this thesis only account for tasks that finish. That is, they focus

on batch workloads that have a beginning and end. Services, processes that must

continuously run, may require a different set of strategies to mange co-incident power

peaks and energy consumption. Examples of popular streaming platforms include

Apache Storm [29], Apache Kafka [66], Apache Spark [75], Twitter’s Heron [36], and

LinkedIn’s Samza [54]. This is due in large part to the ephemeral nature of the

work they need to perform. Some services, such as databases and key-value storage,

experience a variable amount of work to carry out over time. Thus, more investigation

must be done to determine if the techniques presented here are applicable to such

workloads.
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